53 research outputs found

    VEZF1 elements mediate protection from DNA methylation

    Get PDF
    There is growing consensus that genome organization and long-range gene regulation involves partitioning of the genome into domains of distinct epigenetic chromatin states. Chromatin insulator or barrier elements are key components of these processes as they can establish boundaries between chromatin states. The ability of elements such as the paradigm β-globin HS4 insulator to block the range of enhancers or the spread of repressive histone modifications is well established. Here we have addressed the hypothesis that a barrier element in vertebrates should be capable of defending a gene from silencing by DNA methylation. Using an established stable reporter gene system, we find that HS4 acts specifically to protect a gene promoter from de novo DNA methylation. Notably, protection from methylation can occur in the absence of histone acetylation or transcription. There is a division of labor at HS4; the sequences that mediate protection from methylation are separable from those that mediate CTCF-dependent enhancer blocking and USF-dependent histone modification recruitment. The zinc finger protein VEZF1 was purified as the factor that specifically interacts with the methylation protection elements. VEZF1 is a candidate CpG island protection factor as the G-rich sequences bound by VEZF1 are frequently found at CpG island promoters. Indeed, we show that VEZF1 elements are sufficient to mediate demethylation and protection of the APRT CpG island promoter from DNA methylation. We propose that many barrier elements in vertebrates will prevent DNA methylation in addition to blocking the propagation of repressive histone modifications, as either process is sufficient to direct the establishment of an epigenetically stable silent chromatin stat

    Zebrafish Her8a Is Activated by Su(H)-Dependent Notch Signaling and Is Essential for the Inhibition of Neurogenesis

    Get PDF
    Understanding how diversity of neural cells is generated is one of the main tasks of developmental biology. The Hairy/E(spl) family members are potential targets of Notch signaling, which has been shown to be fundamental to neural cell maintenance, cell fate decisions, and compartment boundary formation. However, their response to Notch signaling and their roles in neurogenesis are still not fully understood. In the present study, we isolated a zebrafish homologue of hairy/E(spl), her8a, and showed this gene is specifically expressed in the developing nervous system. her8a is positively regulated by Su(H)-dependent Notch signaling as revealed by a Notch-defective mutant and injection of variants of the Notch intracellular regulator, Su(H). Morpholino knockdown of Her8a resulted in upregulation of proneural and post-mitotic neuronal markers, indicating that Her8a is essential for the inhibition of neurogenesis. In addition, markers for glial precursors and mature glial cells were down-regulated in Her8a morphants, suggesting Her8a is required for gliogenesis. The role of Her8a and its response to Notch signaling is thus similar to mammalian HES1, however this is the converse of what is seen for the more closely related mammalian family member, HES6. This study not only provides further understanding of how the fundamental signaling pathway, Notch signaling, and its downstream genes mediate neural development and differentiation, but also reveals evolutionary diversity in the role of H/E(spl) genes

    Hedgehog Signaling during Appendage Development and Regeneration

    No full text
    Regulatory networks that govern embryonic development have been well defined. While a common hypothesis supports the notion that the embryonic regulatory cascades are reexpressed following injury and tissue regeneration, the mechanistic regulatory pathways that mediate the regenerative response in higher organisms remain undefined. Relative to mammals, lower vertebrates, including zebrafish and newts, have a tremendous regenerative capacity to repair and regenerate a number of organs including: appendages, retina, heart, jaw and nervous system. Elucidation of the pathways that govern regeneration in these lower organisms may provide cues that will enhance the capacity for the regeneration of mammalian organs. Signaling pathways, such as the hedgehog pathway, have been shown to play critical functions during development and during regeneration in lower organisms. These signaling pathways have been shown to modulate multiple processes including cellular origin, positional identity and cellular maturation. The present review will focus on the cellular and molecular regulation of the hedgehog (HH) signaling pathway and its interaction with other signaling factors during appendage development and regeneration
    • …
    corecore